Modules

Choose a Visual Search Option

Hardware Software Visual Module SearchCross-Curriculum Visual Module Search

Want to know more about modules?

Find out more about modules and their contents.

Have a module of your own?

Contribute to the site by submitting your own module. Your submission will be reviewed by CS In Parallel to determine what categories it should be listed under. After that process, it will become available to all viewers of this site.

Full-Text Search Across the Module Collection




Current Search Limits:

Results 1 - 8 of 8 matches

Monte Carlo Simulations: Parallelism in CS1/CS2
David Valentine, Slippery Rock University of Pennsylvania
Use Monte Carlo Simulations in CS1/CS2 to expose students to parallel programming with OpenMP.

Drug Design Exemplar
Richard Brown, Saint Olaf College
An important problem in the biological sciences is that of drug design: finding small molecules, called ligands, that are good candidates for use as drugs. We introduce the problem and provide several different parallel solutions, in the context of parallel program design patterns.

Map-reduce Computing for Introductory Students using WebMapReduce
Professor Richard Brown, St. Olaf College Professor Libby Shoop, Macalester College
This module emphasizes data-parallel problems and solutions, the so-called 'embarrassingly parallel' problems where processing of input data can easily be split among several parallel processes. Students use a web application called WebMapReduce (WMR) to write map and reduce functions that operate on portions of a massive dataset in parallel.

Multicore Programming with OpenMP
Richard Brown, Saint Olaf College; Elizabeth Shoop, Macalester College
In this lab, we will create a program that intentionally uses multi-core parallelism, upload and run it on the MTL, and explore the issues in parallelism and concurrency that arise. This module uses OpenMP.

Introducing Students to MapReduce using Phoenix++
Suzanne Matthews, United States Military Academy
MapReduce using Phoenix++, which is shared-memory implementation of the map-reduce framework. Through code provided students learn to implement a mapper and reducer function for the classic word count example in C++ to use with Phoenix++.

Concurrent Access to Data Structures in C++
Richard Brown, Saint Olaf College
This module enables students to experiment with creating a task-parallel solution to the problem of crawling the web by using C++ with Boost threads and thread-safe data structures available in the Intel Threading ...

Multi-core programming with Intel's Manycore Testing Lab (using Threading Building Blocks)
Professor Richard Brown, St. Olaf College
Intel Corporation has set up a special remote system that allows faculty and students to work with computers with lots of cores, called the Manycore Testing Lab (MTL). In this lab, we will create a program that intentionally uses multi-core parallelism, upload and run it on the MTL, and explore the issues in parallelism and concurrency that arise.

Concurrency and Map-Reduce Strategies in Various Programming Languages
Professor Richard Brown, St. Olaf College
This concept module explores how concurrency and parallelism have been established in programming languages and how one can implement map-reduce in several high-level programming languages taught in a CS curriculum, including Scheme, C++, Java, and Python.


      Next Page »